61 research outputs found

    Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant

    Get PDF
    Although the dredging of ports is a necessary management activity, it generates immense quantities of sediments, that are defined by the European Union as residues. On the other hand, the relevant peat demand for plant cultivation compromises its availability worldwide. In this context, the present work wanted to find an alternative substrate in order to replace and/or reduce the use of peat in agriculture, through the study of the suitability, concerning the exchange of substrate–plant–water pollutants, of the dredged remediated sediments as a fruit-growing media. Forty-five pomegranate trees (Punica granatum L. cv “Purple Queen”) were cultivated in three types of substrates (100% peat as a control, 100% dredged remediated sediments and 50% both mixed). The metal ion content and pesticide residues were analysed in the different plant parts (root, stem, leaves and fruits) and in drainage water. The results showed a limited transfer of pollutants. All the pollutants were below the legal limits, confirming that the dredged sediments could be used as a growing media, alone or mixed with other substrates. Thus, the results point out the need to open a European debate on the reuse and reconsideration of this residue from a circular economy point of view

    Fulminant streptococcal toxic shock syndrome

    Get PDF
    We present a case of a previously healthy 37-year-old male who developed fever, nausea, vomiting, diarrhoea, and hypovolaemia. Within 5.5 h he presented with tachycardia, tachypnoea, became hypotensive and displayed a diffuse erythematous rash. In the following hours he developed persistent hypotension, acute respiratory distress syndrome, liver failure, kidney failure and disseminated intravascular coagulation. A diagnosis of toxic shock syndrome was made, but despite antibiotic therapy, immunoglobulin administration, and supportive measures, the patient died 50 h after presentation. Streptococcus pyogenes was isolated from blood cultures

    Molecular, physico-chemical, and sensory characterization of the traditional spanish apple variety "Pero de CehegĂ­n"

    Get PDF
    The "Pero de CehegĂ­n"is an ancient local variety of apple grown in Murcia (Spain). In this study, microsatellites markers showed evidence of a unique profile that has never been reported before in other Spanish apple germplasm collections. Five "Pero de CehegĂ­n"clones were evaluated and compared with two commercial apple varieties, "Fuji"and "Golden Delicious", to assess its marketing potential. For this, the physical (weight, height, and width of the fruit, moisture content, firmness, and color of the fruit, among others), and chemical (total soluble solids, total acidity, and maturity index) properties of the fruits were evaluated. In addition, the content of bioactive compounds such as total polyphenol content, total antioxidant activity using the ABTS+, DPPH, and FRAP methods, and the sugar profile were analyzed, and their sensory profile was also evaluated. Physico-chemical differences were found within the "Pero de CehegĂ­n"clones and between the commercial varieties. "Pero de CehegĂ­n"had a high firmness, high total soluble solids, very low total acidity, high FRAP antioxidant capacity, and more sucrose content in comparison with "Fuji"and "Golden Delicious". These distinctive characteristics and the good appearance of the fruit make this variety a marketable product that will increase the offering of traditional, local, but underutilized fruit varieties

    Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions

    Get PDF
    This research analyzed the phytochemical profile of prickly pear fruits from ‘Orito’ cultivar stored under cold conditions (2◩ C, 85–90% RH) and shelf-life conditions at room temperature (stored at 20◩ C for three days after cold storage) for 28 days, mimicking the product life cycle. A total of 18 compounds were identified and quantitated through HPLC-DAD-MS/MS (High-Performance Liquid Chromatographic-Diode Array Detector-Mass Spectrometry) analyses. Phenolic acids such as eucomic acid and betalains such as indicaxanthin were the predominant chemical families, and piscidic acid was the most abundant compound. During cold storage, the content of eucomic acid isomer/derivative and syringaresinol increased, and citric acid decreased, which could be caused by the cold activation of the phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) enzymes. However, no significant differences were found in the content of these compounds during shelf-life storage. These results showed that ‘Orito’ fruit marketability would be possible up to 28 days after harvesting, retaining its profile, which is rich in bioactive compounds

    Sustainable and green persulfate-based chemiluminescent method for on-site estimation of chemical oxygen demand in waters

    Get PDF
    The standard method for estimating the chemical oxygen demand (COD) of water bodies uses dichromate as the main oxidant, a chemical agent whose use has been restricted in the European Union since 2017. This method is hazardous, time-consuming, and burdensome to adapt to on-site measurements. As an alternative and following the current trends of sustainable and green chemistry, a method using the less toxic reagent sodium persulfate as the oxidizing agent has been developed. In this method an excess of persulfate, activated through heating in an alkaline solution, oxidizes the chemically degradable organic fraction through a 2-step radical mechanism. The remaining persulfate is evaluated by chemiluminescence (CL) using luminol and a portable charge-coupled device (CCD) camera. The method provided quantitative recoveries and a sample throughput of >60 samples h. It was validated in river water samples by comparison of COD estimations with the standard dichromate method (R = 0.973, p < 0.05) and with a UV–Vis permanganate-based method (R = 0.9998, p < 0.05), the latter being also used for drinking waters. The proposed method is a sustainable and green alternative to the previous used methods. Overall, the method using activated persulfate is suitable for use as COD quantitation/screening tool in surface waters. Considering that its main components are portable, it can be ultimately adapted for in situ analysis at the point of need

    Application of lca methodology to the production of strawberry on substrates with peat and sediments from ports

    Get PDF
    The Life Cycle Assessment (LCA) methodology was applied to identify the potential environmental impact of dredged sediments used as growing media for food crops. The dredged sediments used came from Livorno port and were previously phytoremediated. For the assay, strawberry plants (Fragaria x ananassa Duch vr. ‘San Andreas’) were used. The plants were cultivated on three different substrates (100% peat, 100% dredged sediment and 50% mix peat/sediment) to identify the real impact of the culture media on the growing process. LCA was calculated and analyzed according to ISO 14040:2006 by SimaPro software. ReCipe Midpoint (E) V1.13/Europe Recipe E method was applied. One kilogram of produced strawberry, for each crop media tested, was defined as the functional unit. Eighteen impact categories were selected where Marine Eutrophication (ME), Human Toxicity (HT) and Freshwater Ecotoxicity (FET) were identified as relevant impact categories. The LCA results showed an increase in the environmental impact of strawberry cultivation using 100% sediment against 100% peat, due to the decrease in fruit production caused by the sediment. Nevertheless, the decrease in the environmental impact and the fruit production increase identified when the sediment is used mixed (<50%) with other substrates. The appropriate use of these substrates would be justified within the context of the circular economy

    New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities

    Full text link
    [EN] This paper shows a particular example to move to a sustainable circular economical process from valorization of rice straw ashes by developing a green synthesis for obtaining a useful sub-product. This strategy can palliate negative effects of the agriculture waste practices on the environment and also the obtained silica reduced nitrate content in waters. It is demonstrated that the silica synthesis developed at lab was scalable more than a hundred times with good results. Adsorption studies of nitrate in standards and real well waters at lab scale and scaling-up provided similar results. Adsorption values near to 15 mg/g for nitrate standards and 8.5 mg/g for well water were obtained until achieving the initial nitrate concentration. Experimental breakthrough curves fitted to Thomas model, which gave similar results for adsorption capacities. The adsorption capacity was checked with that obtained by a commercial resin, providing improved results. The method at large scale was compared with industrial traditional methods and green adsorbents.The authors are grateful to EU (EASME LIFE and CIP ECO-Innovation) LIBERNITRATE. LIFE 16 ENV/ES/000419; EU FEDER and the Gobierno de Espana MCIU-AEI (CTQ2017-90082-P) and the Generalitat Valenciana (PROMETEO 2020/078) and EU FEDER-Generalitat Valenciana (ID-FEDER/2018/049) for the financial support received. H. R. Robles-Jimarez expresses his grateful to EU-LIBERNITRATE. L. Sanjuan-Navarro expresses his gratitude for the FPU-grant (MCIU-AEI) .Robles-Jimarez, H.; Sanjuan-Navarro, L.; Jornet-MartĂ­nez, N.; Primaz, C.; Teruel-Juanes, R.; Molins-Legua, C.; Ribes-Greus, A.... (2022). New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities. Science of The Total Environment. 805:1-12. https://doi.org/10.1016/j.scitotenv.2021.15031711280
    • 

    corecore